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*ABSTRACT

A new algorithm for error detection and smoothing, EDS, has been deve-
loped for infrared image data. Numerical validation indicates that EDS de-
tects more than 99% of all significant errors. Operating in the time domain,
EDS exploits smoothness criteria calculated from laboratory point source meas-
urements, and isolates error bursts via a region-growing approach. EDS is ap-
plicable to data from any optical scanner whose output is sampled digitally
multiple times per dwell.
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I. INTRODUCTION

The Navy's Background Measurements and Anal- Table I
ysis Program (BMAP) was recently begun to obtain Number of extended artifacts (i.e., multiple errors) in
the data needed to design surface- and air-based in- an average frame of Montauk Point data. By "length
frared search and track (IRST) devices. 1.2 The data of artifact" is meant the number of sequential defec-
are intended to be a test set of infrared (IR) back- tive samples in an error burst. Thus, an artifact of
ground images for use in off-line simulation of alter- length 8 is an error burst consisting of 8 sequentialdefective samples. Each data frame contains 8400

E native signal processing techniques for false-alarm samples.
suppression. The IR backgrounds data are acquired
with a sensor that has high spatial resolution, high sen-

t-. sitivity, and simultaneous 4 to 5 ptm and 8 to I L am
3 Length of artifact

Initial IR clutter measurements were obtained at (samples), L 6 7 8-9 > 10
Montauk Point, Long Island, N. Y."- Unfortunate- A a uI
ly, the initial measurements were contaminated by a Average number of 1 I I !
malfunctioning digital recorder with about 4% defec- artifacts of length
tive data (3% small-amplitude errors and I% large- L (per frame)
amplitude errors). Thus, each data frame of 6400 sam-
pies contains (on the average, prior to data reduction)
about 60 large-amplitude errors, i.e., errors of am- Identification of multiple sequential and nearly se-
plitude 10 times the sensor noise or greater. Visual in- quential errors is more difficult than identification of
spection of the data shows that the errors tend to occur isolated single-sample errors. Figure 1 illustrates the
in bursts, i.e., as multiple sequential errors. difficulties experienced in using a commonl y available

Subsequent to the Montauk Point measurements outlier code, the IMSL routine ICSMOU, against a
there was a hiatus in field activities during which soft- pair of closely spaced single-sample errors. In the sim-
ware techniques were developed for extracting a limited pie example of Fig. 1, ICSMOU damages a good data
interim data set for use until better data were ob- point. Figure 2 illustrates a compressed notation for
tainable, representing the results of algorithm performance on

The need to recognize "wild points" or "outliers" short sequences of synthetically damaged data. The
in data is a requirement of data reduction in all ex- single graph in Fig. 2 conveys the same information
perimental sciences, including, for example, chemis- as the three graphs in Fig. I.
try, speech analysis, spectroscopy, and
geophysics.6- 0 The Montauk data analysis is unusual
relative to other outlier identification problems in that 'A. Hirschman, "BMAP Surface-Based Background Measure-
the Montauk data contain a large number of multi- ment Activities at Montauk Point, New York, August 1983,"

Naval Surface Weapons Center, White Oak, Silver Spring, Md.,pie sequential errors. On the average, each frame of draft report, Nov. 1984.
Montauk data contains one error burst of 10 (or more) 5D. R. Jensen, "Data Report for IR BMAP Experiment, Aug.

t_% sequential errors, as well as many error artifacts of 1983," Naval Ocean Systems Center. San Diego, Cal., Memoran-
lesser length (Table 1). dum DRJ:plk, Serial 5325/109, 14 Nov. 1983.

6J. R. Rice, Numerical Methods, Software. and Analysis,
McGraw-Hill, New York, 1983.

7H. Ney, "A Dynamic Programming Technique for Nonlinear
'R. L. Lucke, A. P. Schaum, J. C. Kershenstein, J. Michalo- Smoothing", Proc. IEEE International Conf. Acoustics, Speech
wicz, B. V. Kessler, A. B. Blumenthal, I. Goldstein, and A. and Signal Processing, Vol. 1, Mar. 30-31 and Apr. 1, 1981, At-
Krutchkoff, "The Navy's Infrared Background Measurement lanta, Ga., pp. 62-65.
and Analysis Program," Proc. IRIS Specialty Group Meeting AH. Ney, "A Dynamic Programming Algorithm for Nonlinear
on Targets. Backgrounds, and Discrimination, San Diego, 11-14 Smoothing," Signal Processing, Vol. 5, No. 2, Mar. 1983, pp.
Feb. 1986. 163-173.2R. A. Steinberg, "Navy IR Background Measurements and 9F. Pasian and A. Crise, "Restoration of Signals Degraded by
Analysis Program," Proc. Tri-Services Infrared Backgrounds Impulse Noise by Means of a Low-Distortion Non-Linear Fil-
Symp., Oct. 18-20, 1983, Mitre Corporation, pp. 216-223. ter." Signal Processing, Vol. 6, No. 1, Jan. 1984, pp. 67-76.
M. S. Longmire, "A Final Technical Report on Calibration and '°R. E. Boucher and J. P. Noonan. "Adaptive Detection and
Use of Clutter Data for Simulation," Western Kentucky Uni- Removal of NonGaussian Spikes from Gaussian Data," IEEE
versity, Bowling Green, Ky., Contract No. N0014-84-C-2034 (un- Trans. Pattern A nalysis and Machine Intelligence, Vol. PAMI-4,
dated draft report to Naval Research Laboratory). No. 2, Mar. 1982, pp. 132-136.
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i
1 2 3 4 5 6 7 8N-

1 2 3 4 5 6 7 8 9

Figure 2. Illustration of compressed notation for
(b) p 0- 1..-- representing the results of algorithm performance on

1 2 3 4 5 6 7 a short sequences of synthetically damaged data. The
single graph in this figure conveys the same informa-
tion as the three graphs in Fig. 1. O's are original un-
damaged data; vertical arrows indicate data errors that
we intentionally implant; X's are values after applica-
tion of correction algorithm (ICSMOU in this Instance).
Where X and 0 coincide, only 0 is drawn. Where X falls
at the tip of an arrowhead (e.g., samples 4 and 6) the

(Wi e-- - , 0- correction software has failed to recognize a data er-
1 2 3 4 5 6 7 8 ror. Where X appears at a sample with no vertical ar-

row (i.e., with no error), correction software has
Figure 1. Inadequate treatment of multiple errors can damaged a good data point (e.g., sample 5). When X
make the data worse. (a) Original data (constant val- falls anywhere other than at the tail of an arrow, cor-
ue). (b) Damaged data, with outliers at samples 4 and 6. rection software has Identified the data sample as an
(c) "Corrected" data, after application of IMSL routine error but has generated an imperfect correction (not
ICSMOU, designed for generic wild point removal ap- illustrated on the figure). The dashed line is the "cur-
plications.6 ICSMOU fails to identify data errors at rent waveform," i.e., the waveform as it would appear
samples 4 and 6, and at sample 5 damages what origi- after the last processing operation performed on the
nally had been a good data value, data.

~.r0

A modified median filter approach 9 and nonlinear steps, such as FFT's or histograms, required for the
smoothing by dynamic programming7 'a both appear data set as a whole. Execution time on a VAX 11/780
to hold some promise. However, both these techniques was about 10 times faster than ICSMOU.
require setting thresholds and selecting smoothness Outlier identification and replacement is the first
parameters that depend in a non-obvious way on the step in the IR clutter data reduction process. The se-
character of the data. The original error detection tech- cond step in data reduction involves correction of a
nique described in this report is based on exploiting structural distortion in the longwave data caused by
smoothness criteria that derive directly from the known resistive coupling between the longwave detector ele-
point response characteristics of the infrared scanner. ments. 1.1

2 The remaining steps in data reduction in-
The values ascribed to the smoothness parameters are elude stagger offset compensation, responsivity nonun-
simply calculated from measurements made against iformity compensation, and radiometric calibration. 3

a laboratory point source, and do not depend on the
highly variable structure of the IR clutter data viewed 11R. A. Steinberg, "Infrared Background Sensor Characteriza-

in the field. tion and Data Reduction," IRIS Specialty Group on Targets,
The computation is structured such that the data Backgrounds, and Discrimination, Feb. 1-2, 1984, Camp Pen-04 dleton, Cal., pp. 209-231.

%acpre-screened with asimple algorithm that allows 12tn a. p.2921are Ra '2 . A. Steinberg, "Elimination of Sensor Artifacts from In-
further attention to be concentrated only on "suspect" frared Data," Report 8861, Naval Research Laboratory, Wash-
neighborhoods. There are no computation-intensive ington, D.C., I I Dec. 1984.

10
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2. OUTLIERS APPEAR IN THE DATA

Prior to the field tests at Miontauk Point, labora- Figure 4 depicts a scan line of data from Montauk
tory bar-target and point-target measurements were Point, obtained looking up from the surface against
obtained and analyzed to characterize the IR scanner's a cloud/sky background. The data shown in Fig. 4
transient response and radiometric sensitivity, contain about three times as many multiple errors as
Figure 3 shows a sample of this data, obtained against an average scan line: of the 400 data samples that com-
a laboratory target consisting of six vertical bars of prise the waveform, 24 are multiple errors. Three badly
progressively increasing width, damaged data strings, each coincidentally of I I sam-

The scan line shown in Fig. 3 contains three single- pies duration, are found to contain 26 of the 30 total
sample errors, a large positive-going error at sample errors. The first badly damaged IlI-sample interval,
315, a very large positive-going error at sample 422, centered on sample 17 1, contains 7 errors and 4 good
and a small negative-going error at sample 433. Sen- data points (Fig. 5a). The second error burst, centered
sor closed-cover noise is about one count, RMS; major on sample 295, contains 8 errors and 3 good data
y-axis divisions are 500 counts, as shown on the figure. points (Fig. 5b). The third and final error burst, cen-
Thus, none of the waveform structure visible in Fig. tered on sample 422, contains I I errors and no good
3 is attributable to sensor closed-cover noise. data points (Fig. 5c).

The narrowest bar, left-most in Fig. 3, is spatially The remaining 4 errors in the scan line are each iso-
unresolved. The physically smallest possible optical lated single-sample errors. These isolated outliers, once
source, viz., an ideal point source, induces a pulsed- identified (detected), can be replaced by interpolation
shaped waveform ("the point response") nearly iden- without significantly degrading data quality, due to
tical to this narrowest bar. Any pulsed-shaped wave- the high data sampling rate (3.47 samples per dwell).
form narrower than the point response must be an Although the IR clutter data within the 3 multi-error
artifact of electrical, rather than optical, origin. Thus, regions cannot be reconstructed, this only marginally
applying a simple pulse-width criterion, single-sample affects the utility of the data. Once the 3 error bursts%
errors are detected easily both by eye and by algorithm, are identified and excised, the remaining data may then
Intuitively, the key to simple identification of single- be used for a variety of IRST processor simulation
sample errors lies in prior knowledge of the system studies.
point response. We note that our notation on "zoom" plots of er-

rors found in field test data (e.g., Fig. 5) is different

4000 
_________2150____1_1_____ 'N

3500 - 215

3000- 2100-

4. 2500 -2075--

E 2000 ~2050-
1500 2025 '

1000 2000-

500, 1975

100 200 300 400 500 600 100 150 200 250 300 350 400 450 500
Sample number Sample number

Figure 3. Single scan line (midwave channel 15) ob- Figure 4. Scan line of badly damaged data. The data I
tained against a laboratory target consisting of six ver- shown in this figure contain about four times as many
tical bars of progressively increasing width. Single- errors as an average scan line: of the 400 data sam-
sample errors occur at sample numbers 315, 422, and pies that comprise the waveform, 24 are multiple er-
433. A vertical tick mark above the abscissa indicates rors. Vertical lines connect data errors to interpolated

tf.the location of each data error. values on the waveform.
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2050- k 4 1

2048 -

(a) 2046 -

C&

2044-

2042 i - I I
150 160 170 180

Sample number

2130- 4 4 
20 80r

2110- -- ..' 2060,"

(b) 2090 - 1 0 c 2040-T
C

2070- " 20201 F.

2050' , I , 20001 I , I
275 285 295 305 405 415 425 435 hie.

Sample number Sample number '1",

Figure 5. Expanded view of the three error burst intervals in Fig. 4. Circles not connect-
ed to vertical lines indicate validlundamaged data points. Vertical lines connect interpo-
lated values (indicated by circles) to damaged data points. Arrowhead indicates that error
value is off-scale. (a) 11-sample interval centered on sample 171 contains 7 errors. (b)
11-sample interval centered on sample 295 contains 8 errors. (c) 11-sample interval cen-
tered on sample 422 contains 11 errors. k"

than for data into which we ourselves have implant- polated values, i.e., replacement values for iden-

ed errors for algorithm evaluation purposes ("synthetic tified errors.
errors", e.g., Fig. 2). Our notation for error detec- 0 Unattached ends of vertical lines are original, --

tion in field test data, illustrated in Fig. 5, is as follows: presumably defective, values.
- Vertical lines indicate samples identified as errors * Arrow heads indicate off-scale error values. L

by the EDS software. 0 Open circles not attached to vertical lines indi-

0 Open circles attached to vertical lines are inter- cate "good" measured data.
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3. HOW RELIABLY ARE THE ERRORS DETECTED?

The example of Figs. 4 and 5 illustrates the capa- represents a synthetic data error of known location
bility of our new error detection algorithm for isolat- and amplitude (Fig. 7). The result is a synthetically
ing long sequences of damaged data. In this section corrupted data set B (Fig. 8),
we present the results of a validation analysis intended
to address the following statistical aspects of algorithm B A + S. (2)
performance:

9 What fraction of data errors elude detection by
EDS? How many of the undetected errors are sig-
nificant, in the sense of having large amplitude? r - A r.

- What fraction of the good data is damaged by 25 c-D
EDS?

* For those data errors that are correctly identified 
N. I

as errors by EDS, how accurate are the applied E
corrections? -25

Our approach to statistical validation was first
described in broad outline in Ref. 2.
a The validation process starts with the selection of -50
a data set A that is error-free by the standard of the 110 160 210 260 310 360 410 460
software error detection and smoothing (EDS) oper- Sample number
ator, 0, represented as Figure 7. Sample scan line of synthetic data errors, >

containing two five-fold errors (A and C), two double
A = O(A), (1) errors (B and D), and an isolated error (E). The error

generation algorithm was designed to provide error
i.e., operating on data set A with the EDS software statii s e i eith resp e to an a ide ror

,. statistics specified with respect to an amplitude pro-
leaves the data set unchanged. file (Fig. 9) and the number of error bursts of a given

The data set A used for analysis consisted of 800 duration (Fig. 10). The ensemble of 800 such error lines
scan lines, such as that plotted in Fig. 6. is referred to in the text as data set S.

We numerically generate and add to A a set, S, of
error values, in which every nonzero component 2050

2050 A I  I I I

2050 1 1 2 1

-K 1950 B
2000 c B

'" '1900

"1950 " E

1)850 V h

1900 E 1800
S1850 75/, t ~~750 I

1800 110 160 210 260 310 360 410 460 510

Sample number
6 1750 -

110 160 210 260 310 360 410 460 510 Figure. A synthetically corrupted scan line obtained

Sample number by adding synthetic data errors (Fig. 7) to an error-free
scan line (Fig. 6). Error bursts, i.e., multiple sequen-

Figure 6. An error-free scan line. 800 such error-free tial errors, are injected at positions denoted as A, B,
lines of data (collectively referred to as data set A) are C, and D, on the waveform; a single error was injected
used in connection with the statistical validation anal- at position E. The multiple error at D occurs on a peak,
ysis of the error detection algorithm. The significance as seen by comparison with the corresponding region
of regions labeled A to E is discussed in the text. D in Fig. 6.

..
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The error set, S, is described by two histograms 56

(Figs. 9 and 10) that statistically characterize the syn- 0.8-
thetic errors with respect to amplitude and spatial ex-
tent, and that, taken together, constitute a model for 4 0.6-
the error generation process.

Each data frame used in the statistical validation 6
had 6400 samples: -0 0.4

0

16 scan lines per frame x 400 samples per line
=6400 samples per frame. t~ 0.2 F

Fifty statistically independent error frames were nu- 00 298 335 27 7 650 22 18 33

merically generated, containing a total of 11,470 data 1 234 5 67 8 9>9
errors. It follows that the overall error rate is: Artifact length

(11,470 defective samples) Figure 10. Artifact length histogram of synthetically
errr at =6400 samples per frame x 50 frames generated errors. A total of 7168 error artifacts (i.e., er-

= 0.358= 3.8%.ror bursts) were dispersed into 50 data frames. As in-
= 0.358= 3.8%.dicated by the left-most bar in the figure, about 82%

*Figure 9 shows how the 11,470 synthetic errors were of the artifacts were single-sample errors. The synthet-
distributed in amplitude. For example, 8458 errors ic errors are generated by a program that closely

matches their artifact length histogram, shown here,* ~~(about three-fourths of the total) had amplitude values t h riatlnt itga ferr on nMn
between I and 9 counts. The number of errors of am- tauk Point data. Figures 9 and 10 together provide a
plitude 2: 10, as a fraction of the total data set, is thus characterization of the Montauk data as well as a
given by: model for the synthetic error generation process.

((11,470 -8,458)/320,0001 =0.94%.

0.8 We consequently speak of the data as having
rW581 Isuffered about 1% significant damage.

In this report a group of contiguous errors bound-
.0.6 - ed on each side by a good data value is referred to

e either as an error burst or as an error "artifact," with
the artifact length being defined as the number of se-

00.4 - quential errors. The 11,470 errors in error set S were
- grouped into a total of 7166 artifacts, with the distri-

bution of lengths as shown in Fig. 10. For example,
U. 0.2 - Fig. 10 indicates that 5864 artifacts (82% of the total)

1134 were of unit length, i.e., were isolated single-sample
169442 errors.

0.0 FZ=When our EDS algorithm is applied to the synthetic-
10 id 0g 1 40 1 2560I ally damaged waveform shown in Fig. 8, the smoothed

Amplitude (cuns waveform shown in Fig. I11 is obtained. Comparing
visually the original and smoothed waveforms (Figs.

Figure 9. Amplitude histogram of 11,470 synthetically 6 and 11, respectively) we note that all regions of data
generated errors, dispersed Into 50 frames of data damage have been identified and, with varying degrees
(overall error rate = 3.58%). About three-fourths of the of success, corrected. The multiple errors at B and C.
errors have values from I to 9 counts In amplitude. The and th igeerratEhv encrrce ihhg

* ~~data error sign was modeled as statistically Indepen- anthsigerortEhvebncrrtdwthih
dent of the error amplitude, and was assigned positive accuracy. The multiple error at A has been imperfectly
and negative values with equal likelihood. The synthet- corrected, with the result that the trough present atW
ic errors are generated by a program that closely A in the original data (Fig. 6) has been sharpened
matches their amplitude histogram, shown here, to the somewhat in the corrected data (Fig. 11). The largest
amplitude histogram of errors found In Montauk Point residual effect of the damage/smoothing process ap-
data. pears at location D. The peak originally present at D

14



THE JOHNS HOPKINS UNIVERSITY

APPLIED PHYSICS LABORATORY
LAUREL. MARYLAND

2050 I I I each consist of 50 frames, i.e., 320,000 values. Equiva-
lently, we may consider corresponding elements in

C these data sets as forming 320,000 3-tuples, (asd),
where a denotes a single element of A (and similarly

1950 for s and 4). A test is performed on each 3-tuple, with

10 - four possible outcomes, as indicated in Table 2.~190
U E Considering an Outcome 2 result, for example, we
is1850 see from Table 2 that this corresponds to the follow-

ing conditions on the 3-tuple (a,s,d):

1800 s=0 (4a)

17501 1
110 160 210 260 310 360 410 460 510 4 a (4b)

Sample number

Figure 11. Smoothed scan line obtained by applying Equation 4a indicates that the data sample in ques-
Algorithm EDS to the synthetically damaged scan line tion has been modified with a zero-amplitude error,
depicted in Fig. 8. Neighborhoods labeled A to E are i.e., the data sample is a valid data point. Equation
compared in the text of the report with corresponding 4b indicates that the processed data value, d, is not
neighborhoods in Fig. 6. equal to the original data value, a. The interpretation

of the Outcome 2 result is, thus, straightforward: a
good data value has been incorrectly identified as an 0

in Fig. 6, badly damaged by a multiple error (Fig. 8), error by the EDS algorithm and modified in ampli-
has been sliced away by EDS (Fig. iI). The data er- tude, i.e., "damaged," by the amount d - a.
rors at D were successfully detected but badly cor- Of the 320,000 trials, an Outcome 2 result is ob-
rected. tained 618 times, i.e., 618 valid data points are

Since restoration of the true data structure is gener- damaged. The 618 corresponding values of Id - a I
ally not possible within regions where multiple errors
have occurred, the EDS algorithm is better described
as providing error detection and censoring, rather than 0.8 480

error correction, within the "blind spots" created by
multiple errors.

Considering the example of Figs. 6, 8, and 11, the 0.6
net effect of data damage/smoothing has been that CI

one structural feature in the original data has been lost
(D), another local feature has been somewhat modi-
fled in structure (A), and all other features have been '6

either repaired or left unchanged in their original un-
damaged condition. Whether the smoothed data, Fig. o. 1 i
I1, provides a sufficiently accurate representation of U.
the original data, Fig. 6, is apparently application- 20 5 1 0 0
dependent. 0.0 0

We next consider error correction statistics estab- 0 5 10 15 0 2 3b A 4 4096
lished over 800 scan lines (i.e., 50 frames) of synthet- Amplitude (counts)
ically damaged data. In the terminology of Eqs. I and Figure 12. Amplitude histogram of damaged points.
2, we operate on the synthetically corrupted data set, Of the 320,000 sample values (i.e., 50 frames) In the vail-
B, with algorithm 0, dation data set A, 618 valid data points are incorrectly

classified as errors and are subsequently modified InA = (B) , (3) amplitude ("damaged") by the EDS Algorithm. The left-
most bar of the histogram indicates that 480 of the

to obtain an estimate, A, for the original error-free damagad samples (78%) were damaged by 4 or less
data set, A. In our numerical study, an ensemble of digital counts. Good data values damaged by more
800 corrected waveforms (e.g., Fig. 1I) constitutes A. than 19 counts were located at the edge of an error
Our numerical study uses data sets A, S, and A that burst.

4,0.4 J*?.. ,- ,*., ~ .~d 4.4. *-.*~*.~.** , ,.,, ~15
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$are depicted as a histogram in Fig. 12. If, for a given From Eqs. 5a and 6 it follows that Outcome I cor-
application, data damage of less than 10 counts is responds to
deemed insignificant, it follows from Fig. 12 that 27
data points have been "significantly damaged" by the so# 0 (7a) I

EDS algorithm. 
d=b.(b

Table 2 Equation 7a indicates that the data sample in ques-
A test is performed on each 3-tuple, (a,sd) with four tion has been modified by a nonzero value, i.e., the

*possible outcomes. Since each data set, (A, S, and data sample is an error. Equation 7b indicates thatA )contains 320,000 values (corresponding to .50 tepoesddt aud seatyeult h
fralu),tste s wa uto me 12,0 ti erTh defective data value b, i.e., no correction has been per-vausof Is Icorresponding to otmeI(missed e- formed. Thus, our interpretation of an Outcome Irors) were used to assemble the histogram in Fig. 13.
Similarly, values of 14 - al corresponding to out- result is that a data error of amplitude s has propagated
comes 2 and 3 were used to assemble Figs. 12 and 14, unchanged through EDS, i.e., the error has been
respectively. "missed."

Of the 320,000 trials, an Outcome I result is ob-
tained 2839 times, i.e., 2839 errors are missed. The

-- ~of 2839 corresponding values of Isi aredepicted as a
Number of histogram in Fig. 13. If, for a particular application,

Outcome s J - a Interpretation Occurrences data errors of less than 10 counts are deemed insig-
nificant, it follows from Fig. 13 that 24 "significant-

I #o S Bad data has 2,839 ly large" errors have not been detected by EDS.
not been However, we see from Fig. 9 that 3012 errors were
detected implanted with amplitudes 2- 10. Thus, the fraction

of significantly large errors not detected by EDS is

2 0 #-0 Good data has 618 (24/3012) = 0.8%; slightly better than 99out of each ,

been damaged 100 large amplitude errors are detected. 0

3 ;0 #s Data error has 8,631
*been detected 23571

0.8 F

4 0 0 Good data has 307,912
been left . .
unchanged

E

* The interpretation of Table 2 for Outcome I is only
slightly less obvious than Outcome 2. According to 0.2 458
Table 2, Outcome I corresponds to 1

S ;d0 (5a) 0 5 1 A 26 25 30 35 4b 45 4096
Error amplitude fcounts)

(S) Figure 13. Amplitude histogram of undetected errors.
Of the 11,470 errors Implanted into 50 frames of data,

From Eqs. Sb and 2, 2839 errors are undetected by EDS. However, only 24
of the missed errors were of significant amplitude, Le,

a=a + s = b, (6) amplitude 10 or larger. Thus, after correction there
were, on average, 0.5 significant undetected errors per
frame. The largest-amplitude undetected error (ampli-

where b is a sample from the damaged data set, B. tude 39) occurred at the edge of an error burst.
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Similarly, it may be shown that a Table 2/Outcome 8078 T 11FT8FT T
IL 3 result corresponds to a trial in which a data error

has been correctly identified as an error by EDS, and 0.8
a correction has been applied to the data. Of the 2
320,000 trials, Outcome 3 occurs 8631 times. The 8631 6
corresponding values of 1i - a I are represented as n
a histogram in Fig. 14, indicating the accuracy of data -
correction for those data errors correctly identified as 0.4

errors by EDS. For example, if correction errors of
Lless than 20 counts are deemed insignificant, it fol- _

lows from Fig. 14 that only 21 error corrections by 419

EDS were "significantly inaccurate." The poorly cor- 86 27 8 6 6 0 0 1 

rected samples - the tail of the Fig. 14 histogram - 0 5 10 15 20 25 30 35 40 4 4096
correspond to "sliced peaks," such as occurred at lo- Remaining amplitude (counts)
cation D in Figs. 6 and !1.

Figure 14. Amplitude histogram of residual errors af-
The three histograms presented here as Figs. 12 ter data smoothing. Of the 8631 errors that were cor-

through 14 together constitute the results of the statisti- rectly identified as errors by EDS, 8078 corrections
cal assessment/validation of our new error detection (93.6%) were accurate to within 4 digital counts. Sam-
and smoothing algorithm, EDS. pies accumulated into the tail of the histogram are at-

tributable to "sliced peaks," such as occurred at
Additional comments regarding final assessment of location D in Figs. 6 and 11, and multiple errors badly

EDS are provided in the Conclusions section. corrected at the ends of a scan line.

,, '-

.

4. SYSTEM POINT RESPONSE

As discussed above, inspection of Fig. 3 supports recorded digitally with a sample depth of 12 bits. Ex-
the intuitive assertion that prior knowledge of system amples of measured point responses are given in Fig.
point response allows us to reliably visually detect 15 for longwave channels 5 and 2.
single-sample errors: since single-sample errors give Inspection of Fig. 15 shows that the point response 0

rise to spikes of width narrower than the point full-width at 10% peak amplitude is about 6.4 sam-
response, a pulse-width criterion serves to detect single- pling intervals. The zero-amplitude baseline is relia-
sample errors. This intuitive observation subsequent- bly captured in about 12 sampling intervals, i.e., by
ly serves as the basis for developing an error-detection representing the point response as a 13-sample wave-
system for multiple errors as well as single errors. Since form.
the key to our approach lies in exploiting prior know- The sampling interval is 96 rad (about 0.55% of
ledge of system point response (SPR) we will first dis- 10) in azimuth, established by slaving the A/D con-

cuss the SPR. verter to a 16-bit shaft angle encoder on the sensor's
Each of the IR scanner's 32 detectors has a differ- scanning mirror:

ent point response. When we speak of system point
response we are referring to the ensemble of measured (21r rad/rev)/(2 samples/rev) = 96 % rad/sample
point responses in which each detector is character- (8)
ized individually.

The point response measurements presented here The instantaneous field of view of each detector is 1/3
were obtained by horizontally scanning the sensor's mrad square, as determined by the cell size (2 mils)
field of view across a laboratory point source. (The and optics focal length (6 inches). Thus, the analog
laboratory set-up is described in Ref. 3.) The data are detector/postamplifier output voltages are sampled 'U

17
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electronically at a rate of We note that each detector is followed by a wide-
band preamplifier, followed in turn by an analog

(333 jrad/dwell)/(96 /rad/sample) postamplifier. The postamplifiers each have a I-pole
3.47 samples/dwell. (9) lowpass characteristic with a 3 dB cut-off at 1000 Hz.

If the postamp response were the only pulse broaden-
The shape of the point response is determined by ing mechanism, the point response in-scan, p(0), would

a number of factors in addition to sample rate, in- thus be a simple exponential, ,

cluding
" Optics blur, (0 0 6<0
" Detector size, shape, and spatial responsivity p() =

characteristics, exp( - kO) , 0 a 0, (10)
* Postamplifier frequency response,
* Point source position cross-scan, relative to the where,

detector's geometric center, and "" -.
* Point source position in-scan relative to the cell 0 = azimuth angle, samples

geometric center and time-phasing of the A/D ko = cut-off spatial frequency, radians/sample,Ssampling clock. ~:
and the optical point source is presumably located at
0 = 0. The cutoff spatial frequency is given by

1.0 k. = 21fo/0 (11)

0.8 where

1 0.6-f, postamp 3dB cutoff = I000 sec'

a 0.4 = angular rate of scan, samples/sec.
E

0.2 The angular rate of scan is calculated in appropriate
measure (samples/sec) as:

0 6 = (30.7 degrees/secX17.45 mrad/degree) * 1,A
1.0 x (I sample/0.096 mrad) = 5580 samples/sec. '-

(W, (12)

S0.8 
a

From Eqs. II and 12,

0.6 k,0 = 1.126 radians/sample. (13)

'a 0.4 -
E If the postamp alone were responsible for pulse f
b broadening, the point response full-width at 10% peak

0.2 amplitude (denoted as Ow,,) would be found from Eq. ,.

10,

2 4 6 8 10 12 p(O,) = exp(-k n0d,) = 0.1. (14)
Sample number 1.4

Figure 16. Measured point responses of Iongwave Fo q.1 n 4v'.
channel 5 (a) and Iongwave channel 2 (b). The wave-

form peak in (a) is very nearly an isosceles triangle 0,,, = 2.3/k,, -, 2 samples (15)

while that In (b) is very nearly flat. The difference In
structure between the peaks of these two waveforms We see from Fig. 15 that the actual full-width at 10% ,

Is attributable to a small displacement of the optical peak amplitude, Of, is about 6.4 samples. Assuming
point source In the direction of scan, as discussed in that the separate contributors to the point response %.
connection with Figs. 16 and 17. each contribute approximately as the square root of ' .

is !

j 4°
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the sum of squares, we find that the postamp response postamp output. Figures 1 Sa and 16 correspond to the
contributes only marginally (about 0.3 samples) to the unusual circumstance where one of the sampling times
overall width of the point response: occurs by coincidence simultaneous with the reference

time t = 0. Thus, a sample is obtained (sample 6 in
Of. - (0f - 0e) 2 0.3 samples. this case) just as the postamp output reaches its max-

imum value.
We conclude from the analysis of Eqs. 10 to 15 that, A flat-topped peak (e.g., Fig. 15b) is produced by

as expected, the measurement system's electrical fre- the sampling circumstance depicted in Fig. 17. In this
quency response is the smallest of the three major ef- case the optics blur is by coincidence equally off-center.fects that, together, determine the width of the point (in opposite directions) at samples 6 and 7.response (cf. Table 3).

Table 3
Point response width is determined by the optics blur,
the detector size, and the postamplifier frequency
response. Tabulated here are the full-widths at 10%
maximum amplitude of the partial responses due to
each of the three main pulse-broadening mechanisms.
Entries 2 and 3 are from Eqs. 9 and 15, respectively.
Entry 4 is measured from Fig. 15. Entry I is inferred I
by assuming that the partial contributions add as the 4 5 6 7 8 Sample number
root of the sum of squares.

. I I I I I I/ 5

Full width at -2 - 0 1 2
10% maximum Detector

ro'. ~~amplitude / eetr

apiuePosition of optics
I. Optics blur (longwave) 5.0 samples blur at r = 0
2. Detector size 3.5 samples
3. Electrical frequency response 2.0 samples +
4. Total (longwave response) 6.4 samples

Visual inspection of the point response waveforms 7-- d d = 37 s
L-". shows that, while their widths at 10% maximum am-

plitude are nearly the same, their detailed structure Figure 16. Sampling conditions that result in a sym-
near the waveform peak exhibits considerable varia- metrically triangular (isosceles) point response peak,
tion. For example, we see that the waveform peak in such as Fig. 15a. Quantity is the sampling interval
Fig. 15a is very nearly an isosceles triangle, while that (0.179 msec); quantity d is the dwell time (0.622
in Fig. 15b is very nearly flat. We next show that var- msec).
iation in the detailed structure near the waveform peak
is attributable to variation in the in-scan position of
the optical point source. Most generally, the peak of the point response has

An isosceles peak (e.g., Fig. 15a) is produced by the an asymmetric triangular shape, having neither the
sampling circumstance depicted in Fig. 16. At the bot- isosceles triangular shape of Fig. 15a nor the flat top
tom of Fig. 16 we schematize a circular optics blur of Fig. 15b.
moving at a uniform speed across a stationary square In performing the point response measurements
detector. The origin of the time axis in Fig. 16, t = presented in this section cross-scan position was ad-
0, is defined as the instant when the optics blur is per- justed simply to maximize the point response peak am-
fectly centered on the detector, i.e., the time when the plitude. No measurements were performed suitable for
detected signal is maximum. Integral values on the assessing structural variations of the point response

% "sample" axis in Fig. 16 correspond to times when with sub-pixel deviations in point source cross-scan
the analog-to-digital (A/D) converter samples the position.

19
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Point response 
.8 (a)

0.8-

0.6-
*0

4 5 6 7 8 9 Sample number E0.4 -

I I I I I I - 9.2 -
-5/2 -3/2 -1/2 1/2 3/2 5/2

fDetector 0
1.0 I I

Position of (b)
optics blur Position of optics 0.8-
at t= -s/2 + + blur at t =rs/2

f 0.6-

Td rd=
3 .47 r s  R 0.4-

FIgure 17. Sampling conditions that result in a flat- 0z
topped point response, such as Fig. 15b. 0.2-

2 4 6 8 10 t2

1.0 Sample number
la) Figure 19. Average of measured point responses for

0.8- (a) the longwave array and (b) the midwave array. Of
the 16 longwave detectors, data from only 13 were

0.6 available for forming the longwave average response.
Data were available from only 12 of the 16 midwave
cells. *

0.4 -

0
Z 0.2 Figure 18 depicts two sample midwave point

responses. The midwave point responses are general-
b Ily very similar to one another and to the iongwave

point responses.
1.0,- . ,

(b) Table 4 includes the full complement of point ,,

N 0.8 response data available at the time the error detection
research was performed. The similarity in structure
of the measured point responses in Table 4 suggests

0.6 that for some applications it may suffice to use an

_t4 array-average point response (Fig. 19). However, the
E 0.4 array average responses are not used or referred to
o3 at any later point in this report. "."

0.2 The peak signal-to-noise ratios (S/N) of the point %
response measurements provided in Table 4 are:

Sample number 750, midwave

Figure I. Measured point responses of (a) midwave S/N 250, Iongwave. (16)
channel 5 and (b) midwave channel 2. .. *
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Table 4
Normalized point responses for the midwave and longwave arrays used at Montauk Point. No point responses
and no clutter data are available for optically inactive elements: midwave channels 14 and 16, and longwave
channel 1. Point response data were unavailable for longwave channel 16. Point response measurements
were damaged by data recorder errors and hence are not tabulated for midwave channels 7 and 9, and long-
wave channel 4.

a. Normalized MWIR Point Responses

Channel I 2 3 4 5 6 7 8 9 10 II 12 13

1 0.000 0.001 0.073 0.449 0.815 1.000 0.966 0.577 0.244 0.080 0.026 0.008 0.003
2 0.000 0.005 0.075 0.412 0.786 1.000 0.976 0.610 0.262 0.088 0.030 0.013 0.006
3 0.000 0.007 0.102 0.467 0.814 1.000 0.941 0.567 0.245 0.085 0.028 0.010 0.004
4 0.000 0.012 0.171 0.553 0.856 1.000 0.925 0.551 0.233 0.079 0.026 0.011 0.003
5 0.000 0.012 0.169 0.569 0.873 1.000 0.856 0.458 0.178 0.061 0.021 0.009 0.005
6 0.000 0.029 0.258 0.641 0.910 1.000 0.824 0.435 0.166 0.054 0.017 0.005 0.003
8 0.000 0.028 0.244 0.620 0.888 1.000 0.852 0.474 0.193 0.068 0.023 0.008 0.003

10 0.000 0.027 0.269 0.652 0.913 1.000 0.785 0.400 0.153 0.049 0.016 0.007 0.005
I1 0.000 0.017 0.219 0.603 0.892 1.000 0.796 0.422 0.176 0.057 0.021 0.008 0.003
12 0.000 0.035 0.307 0.694 0.938 1.000 0.741 0.359 0.131 0.042 0.012 0.005 0.001

K 13 0.000 0.030 0.284 0.679 0.937 1.000 0.724 0.355 0.129 0.045 0.015 0.007 0.003
15 0.000 0.054 0.376 0.762 0.978 1.000 0.669 0.302 0.107 0.033 0.011 0.005 0.003

Avg 0.000 0.021 0.212 0.592 0.883 1.000 0.838 0.459 0.185 0.062 0.020 0.008 0.003

b. Normalized LWIR Point Responses

Channel 1 2 3 4 5 6 7 8 9 10 1I 12 13

2 0.000 0.004 0.008 0.051 0.262 0.688 1.000 0.992 0.489 0.165 0.068 0.038 0.013
3 0.004 0.016 0.033 0.082 0.392 0.890 1.000 0.796 0.392 0.131 0.037 0.012 0.000
5 0.004 0.020 0.035 0.074 0.336 0.836 1.000 0.832 0.434 0.148 0.047 0.012 0.000
6 0.000 0.008 0.051 0.210 0.611 0.946 1.000 0.537 0.183 0.074 0.035 0.008 0.000
7 0.000 0.004 0.019 0.038 0.134 0.622 1.000 0.931 0.641 0.252 0.080 0.019 0.000
8 0.000 0.012 0.044 0.238 0.647 0.968 1.000 0.540 0.198 0.075 0.036 0.008 0.004
9 0.000 0.016 0.032 0.067 0.310 0.817 1.000 0.857 0.480 0.171 0.056 0.012 0.004

10 0.012 0.016 0.048 0.222 0.635 0.964 1.000 0.520 0.171 0.063 0.028 0.012 0.000
11 0.000 0.015 0.031 0.104 0.340 0.861 1.000 0.807 0.417 0.143 0.046 0.027 0.008
12 0.000 0.012 0.035 0.191 0.572 0.911 1.000 0.560 0.198 0.074 0.039 0.012 0.004
13 0.004 0.019 0.039 0.074 0.377 0.879 1.000 0.794 0.381 0.125 0.039 0.004 0.000
14 0.000 0.008 0.019 0.061 0.290 0.718 1.000 0.939 0.420 0.130 0.057 0.031 0.004
15 0.000 0.016 0.033 0.078 0.393 0.898 1.000 0.803 0.377 0.123 0.037 0.012 0.004

t'.

Avg 0.002 0.013 0.033 0.115 0.408 0.846 1.000 0.762 0.368 0.129 0.046 0.016 0.003

6
Thus, the tabulated normalized point response values tive or too noisy to be useful, viz., midwave channels
include a component of zero-mean Gaussian noise of 14 and 16, and Iongwave channel I. Consequently,
RMS amplitude: there are neither point response data nor Montauk

Point clutter data corresponding to these channels.
0.0013, midwave Although longwave channel 16 was active at Montauk

(17) Point no point response data were available for this
0.004, longwave . channel. Finally, there were a number of channels that

were active, but for which the point responses were
damaged by data recorder errors, viz., midwave chan-

A number of detector cells were either totally inac- nels 7 and 9, and longwave channel 4.
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5. ERROR PRIMITIVES: PEAKS AND EDGES

The input to our data correction algorithm is a
400-sample time series,

x(k) , k = 1, 2 ... , 400, / \ R

representing a single uncorrected scan line of IR data.
The elements of x(k) are integers, having the range x(k) \ R 8
of values

LL
0 , x(k) s 4095.

The waveform x(k) is subjected to an initial
processing operation that generates as its product a
vector of primitives, bI I I I I -k

p(k), k = 3, 4, ... , 398, i-2 i. i i+1 i+2

Figure 20. Notation for error peak test. The test forhaving 396 values in one-to-one correspondence with an error peak at sample I is conducted on four sequen- "
elements 3 to 398 of x(k) - The elements of p(k) each tial slope values defined by the 5-sample neighborhood
have one of five possible values, reflecting an initial of i. Sample values of x(k) are indicated by filled cir-
judgement concerning the likelihood of sample x(k) cles. Slope values are given by LL, L, R, and RR (Eq. 19).containing a data error:

0 No initially obvious error
I Positive error peak R

p(k) = -1 Negative error peak (18)
2 Positive error edge

-2 Negative error edge

In this section we explain the workings of an al-
gorithm (PRMTVS) that generates p(k), implicitly x(k)

defining the terms "error peak" and "error edge." L
The test for an error peak at sample i is conducted

on four sequential slope values (Fig. 20),

LL = x(i - 1) - x(i - 2)
L = x(i) - x(i - 1)
R = x(i + I) - x(i) (19) k+1 j+2

RR = x(i + 2) - x(i + 1).
Figure 21. Notation for error edge test. The test for

The test for an error edge at sample-pair (j, j + 1) an error edge at the sample-pair (, j + 1) Is conducted
is conducted on three sequential slope values (Fig. 21), on three sequential slope values defined by the

4-sample neighborhood (j - 1, 1 + 2). Sample values
L = x(j) - x(j - i) of x(k) are indicated by filled circles. Slope values are '

C = x(j + !) - X(J) (20) given by L, C, and R (Eq. 20).
R = xtj + 2) - x(j + I).

It is in the nature of our definitions for error peak values must always appear in groups of at least two
and error edge that sequential elements ofp(k) must sequential values (e.g., Table 6, entries 3 and 4), and 4"

satisfy the set of adjacency rules given in Table 5. For can never appear in isolation (Table 7, entry 2). Other :4-
example, it may be inferred from Table 5 that edge examples of allowed and disallowed primitive se- .:
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quences are provided in Tables 6 and 7. respectively. preted by us as a "peak sharpness metric". Table 8
The algorithm that extracts error peak and error provides values of q derived from the system point

edge primitives from the waveform data is called response, Table 4. A threshold Q, on peak sharp-
PRMTVS (Appendix A). ness, derived from Table 8, is applied in 2.13.2 to as-

Tracing the logic flow in PRMTVS, we see that in- sure that PRMTVS does not mistakenly assign a value
dication of an error peak at sample k requires the satis- p(k) = k I to the peak of an optical point source
faction of a necessary condition, step 2.11.3; in
addition, one of two auxiliary conditions must also
be satisfied, steps 2.12.1 and 2.13.2.

Thresholding the slope absolute value, step 2.11.3a %
removes from consideration the very large number of
low amplitude spikes attributable to closed-cover noise
(an additive Gaussian noise having unity standard devi- ,,
ation, a = 1). Step 2.11.3b is the basic peak condi- x(k
tion, assuring a sign change in slope.

Table 5,0
Primitive adjacency rules. Table entry 0 indicates an
allowed adjacency; entry X indicates a disallowed ad- I_ _______ k
jacency; R indicates a required adjacency. Sample, k i-2 i-I i i + 1 k

p(k) + 1 - 1 +2 -2 Slopename LL L R .4'.

+ I X 0 0 0 Slope value -1 4 -4

-1 0 X 0 Primitivep(k) 0 1

+2 0 0 R 0
-2 0 0 0 R Figure 22. Example of PK1 error peak primitive at

sample i. The values given for LL, L, and R may be seen
to satisfysteps 2.11.3 and 2.12.1. Asterisks denote in-

Table 6 determinate values of p. In general, just three slopeExamples of allowed primitive sequences. values, (LL, L, and R, or L, R, and RR), are needed to

p(k) Interpretation determine a PK1 error peak.

I . .. 0 I 0... Isolated peak
2 . .. 0 I -1 0...j Adjacent peaks of

... 0 1 - I 1 0... alternating sign

3. 0 22 0... Isolated edge
4 . .. 0 2 2 2 2 0... I Staircase
5 . .. 022 -2 -20...I Plateau
6 . .. 0 1 2 2 0... Peak adjacent to W

edge

Table 7
Examples of disallowed primitive sequences. _ _ _ _ _

I I I kI

Adjacency rule Sample, k i-2 i-1 i i+1 i+2
p(k) (Table 5)

Slope name LL L R RR
I. I...0 I 1 0...I X Slope value 2 4 -4 -2
2. I... 020...I R Primitivep(k) 0 1 0

The error peak primitives are of two distinct types, Figure 23. Example of PK2 error peak primitive at
referred to by us as PKI and PK2, corresponding to sample i. The values given for LL, L, R, and RR may
steps 2.12.1 and 2.13.2, respectively. Examples of PKI be seen to satisfy steps 2.11.3 and 2.13.2. Asterisks
and PK2 error primitives are given in Figs. 22 and 23. denote indeterminate values of p. Regarding 2.13.2, A.

The quantity q, defined by step 2.13.1 is inter- note that for this example: 4 = q, > Q, = 1.85.
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Table 8
Metrics q, - q3 are derived from the system point responses. Values for q, are ob-
tained from step 2.13.1, Eq. 19, and Table 4. The value of i to use in Eq. 19 is i =
6 for midwave responses and i = 7 for longwave responses. Values for q2 are ob-
tained from step 2.25.1, Eq. 20, and Table 4. Values for q3 are obtained from step
3.32.3 and Table 4. M.

q, q2 (left) q2 (right) q3

Channel MW LW MW LW MW LW MW LW

1 0.593 * 0.857 1.059 0.578 *
2 0.639 0.750 0.678 0.815 0.983 1.506 0.588 0.701
3 0.696 0.726 0.825 1.184 0.983 0.868 0.584 0.680
4 0.675 * 0.826 0.953 * 0.561 * ,
5 0.777 0.750 0.866 1.174 0.941 0.879 0.589 0.692
6 0.790 1.470 0.769 0.735 0.871 0.619 0.586 0.703
7 1 1.010 * 1.032 * 0.633 * 0.717
8 0.809 1.448 0.778 0.730 0.880 0.585 0.579 0.685
9 0.738 * 1.1% * 0.833 * 0.687

10 0.894 1.483 0.760 0.735 0.832 0.595 0.601 0.696
11 0.921 0.762 0.785 1.392 0.831 0.835 0.608 0.709
12 0.936 1.479 0.749 0.719 0.782 0.641 0.607 0.709
13 0.995 0.740 0.773 1.183 0.734 0.891 0.608 0.689
14 * 0.778 * 0.836 * 1.478 * 0.713
15 1.005 0.665 0.717 1.211 0.697 0.945 0.617 0.683
16 0 * * * " *

minimum 0.593 0.665 0.678 0.719 0.697 0.585 0.561 0.680
maximum 1.005 1.483 0.866 1.392 1.059 1.506 0.617 0.717 ,L

(such as a small target at long range) that could pos- tion of an error edge at sample k requires the satis-
sibly be present in the viewed scene. Applying a faction of a necessary condition, step 2.21.2. In
threshold to q, allows us to discriminate between addition, auxiliary conditions must also be satisfied:
target-like peaks, e.g., Fig. 16. and error peaks, e.g., either 2.22.1, 2.23.1, or 2.25.2.
Fig. 23. Thresholding the slope absolute amplitude, 2.21.2a,

According to Table 8. removes most noise artifacts from consideration. Step
2.21.2b imposes the requirement that neither candi-
date edge point has previously been labeled by

0.59 < q1 < 1.49, PRMTVS as an error peak. '-

from which we surmise that setting a threshold value The error edge primitives are of two distinct types,
called EDGI and EDG2, corresponding respectively

q, < Q = 1.85 to steps 2.22.1/2.23. 1, and 2.25.2. Examples of EDGI
and EDG2 error primitives are given in Figs. 24 and 25. .

should assure that the error peak criterion in PRMTVS The quantity q2 defined in step 2.25.1 is interpret- r"
does not inadvertently cause damage to valid data, ex- ed by us as an "edge sharpness metric." Table 8 pro-
cept on acceptably rare occasions. vides values of q 2 derived from the system point

responses, Table 4. A threshold, Q2, on edge sharp-
We momentarily defer discussion of step 2.13.3 (in- ness, derived from Table 8, is applied in step 2.25.2

yoking the P MOD algorithm), to assure that PRMTVS does not mistakenly assign

Considering now the second part of PRMTVS, an error valuep(k) = *2 to the shoulder of an opti-
which deals with error edges, we observe that indica- cal point source possibly present in the viewed scene. r
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The error primitives defined above are unable to de-
tect a type of length-three artifact illustrated in Fig.
26. (The likelihood of this artifact type assembling by
chance, i.e., frequency-of-occurrence statistics, has not
been established.) The PRMTVS algorithm at step
2.13.3 invokes a routine, PKMOD (cf. Appendix A),
that augments our original definition of the PK2 er-

4x(k) ror primitive by implementing a six-slope test capa-

ble of discovering "flat-footed peak" artifacts such
as that depicted in Fig. 26. However, we note that
PK2MOD was not operational during the numerical
validation studies discussed in connection with Figs.
12 through 14.

Sample, k i1 p t+1 b+2"i-mt"axso ttcp

Slope name L C R
Slope value - 5 1
Primitive p(k) 2 2

Figure 24. Example of EDG1 error edge primitive at
sample pair (i, i + 1). The values given for L, C, and .
R may be seen to satisfy steps 2.21.2 and 2.22.1. Aster- ,"-
isks denote indeterminate values of p. I I 9.--

Sample number: k 1 2 3 4 5 6 7
Original data: a(k) 0 1 2 3 2 1 0

Errors: s(k) 0 0 9 14 9 0 0
Damaged data: b(k) 0 1 11 17 11 1 0
PK2: p(k) 0 0 0 0 0 0 0
PK2MOD: p(k) 0 0 0 0 0 0 0

Figure 26. Example of a length-3 artifact that would
go undetected but for the action of algorithm PK2MOD.

x(k) Errors of amplitude s(k) are implanted at k = 3, 4, and
5. For k = 5, block 2.25 calculates q2 = 1.43 < 02

I,. =2; i.e., the shoulders of the artifact are not steep
enough to qualify as error edges. Fork = 4, block 2.13
calculates ql = 1.2 < Q1 = 1.85; i.e., the 4-slope PK2
test also fails to discover the artifact. However, the

V 6-slope test implemented in PK2MOD returns a non-
null value for p(4), as desired. As determined by

k PK2MOD, the tails of the peak depicted here flattenSample, k i- 1 + +1 i + 2Sml.k.j j+1 2too quickly (compare with Fig. 15a).

Slope name L C R At step 3.32.4 in PK2MOD the shape-related met-
Slope value 1 6 1
Primitive p(k) 2 2 ric q3 is compared with a threshold value Q3. The

value assigned to QO is developed by applying the six-
Figure 25. Example of EDG2 error edge primitive at slope test in PK2MOD to point response data on a
sample pair (i, i + 1). The values given for L, C, and channel-by-channel basis (cf. Table 8), in a process
R may be seen to satisfy steps 2.21.2 and 2.25.2. Aster- strictly analogous to the development of threshold
isks denote indeterminate values of p. Regarding values for q, and q2 , the peak and edge sharpness2.25.2, note that for this example: 3 = q2 > Q2 = 2. metrics defined earlier.
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6. INITIAL ESTIMATES FOR ARTIFACT BOUNDARIES

The vector of primitives generated by the PRMTVS The operation of PRMTVS and BOUNDS is illus-
algorithm, p(k), is next operated on by the BOUNDS trated in Fig. 27 for an isolated error implanted into
algorithm to produce estimates for the starting and a constant-valued waveform. For this simple exam-
ending locations of each error artifact in the scan line. pie the artifact boundary estimates generated by
We define the beginning sample number of artifact BOUNDS precisely indicate the error's location.
j, b(j), as the first defective datum in artifact j (not
the last valid datum preceding the artifact). Similar- We define a "plateau" as an error artifact having
ly, the final sample number of artifact j, f(j), we de- initial and final primitives that are edges of opposite
fine as the last defective datum in artifact j (not the sign, i.e., either [p(b),p(f)I = (2, - 2), or [p(b),p(J)]
first valid datum following the artifact). = (-2,2), sothatp(b) x p(f) = -4(step4.l2.8).

The BOUNDS algorithm (Appendix A) begins by Our estimates for the boundaries of a plateau artifact
searching for the first non-null element of p(k) (step involve a shrinking process (block 4.14) rationalized
4.11.2). If a non-null element is found (say, at loca- in Fig. 28.
tion k, ), the artifact counter is incremented to unity We define a first estimate for the length of artifact
(n = I) and the beginning location of the first artifact, j, i.e., the number of sequential defective samples in
b(l), is estimated (step 4.12.2) as b(l) = k1 . The al- the artifact as
gorithm then looks for three successive null values of K
p(k) before deciding that the artifact has terminated L(
(step 4.13.2). L-(j) f(j) b (j) + 1 (21)

0- vo"

Sample no.: k 1 2 3 4 5 6 7
Errors: s(k) 0 0 0 e0  0 0 0
PRMTVS: p(k) 0 0 0 1 0 0 0
BOUNDS: b/f

Figure 27. Isolated error implanted at location k = 4 in a constant-valued waveform.
The PRMTVS algorithm generates a peak error primitive at the location of the error, i.e.,
p(4) = 1, and null primitives elsewhere. The BOUNDS algorithm indicates the existance
of an error artifact having beginning and final locations (b and f, respectively) coincident L,
with one another and with the error's location.

Sample no.: k 3 4 5 6 7 8 9 10 11 p
Errors: s(k) 0 0 0 e1  e2  0 0 0 0
PRMTVS: p(k) 0 0 2 2 -2 -2 0 0 0
BOUNDS: b f

Figure 28. Plateau error artifact Implanted at locations k = 6 and 7 in a constant-valued
waveform. The BOUNDS algorithm executes a boundary-shrinking operation for this type .
of artifact such that the estimated beginning and final artifact locations (b and f, respec-
tively) coincide with the locations of the implanted errors (block 4.14). A plateau is de-
fined as an artifact for which [p(b).p(f)] = -4 (step 4.12.8).
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7. IDENTIFICATION OF ISOLATED ERRORS

Contrary to the impression perhaps conveyed by ing that BOUNDS is apparently unable to localize the

Figs. 27 and 28, the artifact boundary estimates gener- error.

ated by BOUNDS often provide an inaccurate indi- Figure 31 depicts the implantation of a single error

cation of precisely which data are in error. This point at the peak of the point response, giving rise to a
is illustrated by analysis of five examples (Figs. 29
through 33). The lessons learned from these examples
are generalized to a set of rules for refining the initial
artifact boundary estimates. 7

Figure 29 depicts a single error implanted into a ,
constant slope waveform. The slope, though greater
than 3 (step 2.11 .3a), is much smaller than the ampli-
tude of the implanted error. The simple peak-finding
algorithm in PRMTVS has labeled sample k = 5 in "
Fig. 29 as a negative peak, and BOUNDS is designed
to retain all such labeled features as candidate errors, .- I I I I

i.e., as candidates for correction. In this instance, the Sample no.: k 1 2 3 4 5 6 7 8 9
artifact boundary estimates provided by BOUNDS en- Error: s(k) 0 0 0 e0  0 0 0 0 0

compass the actual error at k = 4 and a valid datum PRMTVS: p(k) 2 2 2 2 0 0 0
at k= 5. BOUNDS: b f

Figure 30. A single error is implanted at location k
= 4 in a constant-slope waveform. The amplitude of
the implanted error equals by coincidence the slope %
amplitude. The artifact boundary estimates generated
by BOUNDS encompass the error at k = 4 and three
valid data points as well.

Sample no.: k 1 2 3 4 5 6 7 8 %
Error: s(k) 0 0 0 e0  0 0 0 0 N

PRMTVS: p(k) 0 1 --1 0 0 0
BOUNDS: b f

Figure 29. A single error is implanted at location k
= 4 in a constant-slope waveform. The slope ampli-
tude is greater than 3, but much smaller than e0 (the
amplitude of the implanted error). The artifact bound-
ary estimates provided by BOUNDS encompass the er-
ror at k = 4 and a valid datum at k = 5. .'"" I I I I I I

Sample no.: k 1 2 3 4 5 6 7 8 9
Error: s(k) 0 0 0 0 -e0  0 0 0 0

Figure 30 is similar to Fig. 29 in once again depict- PRMTVS: p(k) 0 1 -1 1 0 0 0
ing a single error implanted into a constant-slope wave- BOUNDS: b f
form. However, in Fig. 30 the amplitude of the im-

planted error equals, by coincidence, the slope am- Figure 31. A single error occurs at the peak of the
plitude. Once again, the boundaries provided by point response, giving rise to a double-peaked artifact.
BOUNDS encompass the actual error at k = 4. Artifact boundaries b and festimated by BOUNDSen-
However, three valid data points (k = 3, 5, and 6) compass the error at k = 5, as well as valid data at
are also indicated as candidates for correction, indicat- k = 4 and k = 6.
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that a staircase artifact (Table 6, entry 4) is created.
The four-sample sequence labeled as suspect by
BOUNDS encompasses the isolated error.

As a final canonical example of single sample
damage we consider Fig. 33, in which the single error
occurs one sample distant from the peak of an isosceles
point response (e.g., Figs. 15a and 16). The scale of
the point response and the amplitude, sign, and loca-
tion of the error all conspire to produce coincident
boundary estimates b andfthat, in this pathological
instance, do not encompass the actual error.

S I i We draw two conclusions from the preceding ex-
Sample no.: k 1 2 3 4 5 6 7 B 9 10 amples, relevant to the design of the ISOERR al-
Error: s(k) 0 0 0 0 0 -eo 0 0 0 0 gorithm, whose purpose is to detect and correct
PRMTVS: p(k) 0 2 2 2 2 0 0 0 isolated errors.
BOUNDS: b f * An artifact having a BOUNDS length estimate

Figure 32. A single error occurs one sample distant as large as 4 may be caused by an isolated error
from the peak of a flat-topped point response (Fig. 15b), (e.g., Figs. 30 and 32). Thus, a single sample cor-
creating a staircase-shaped artifact. BOUNDS labels rection should be attempted whenever L -5 4.
a 4-sample sequence as suspect. • An artifact having a BOUNDS length estimate

of I may be caused by an isolated error located
one sample distant (left or right) from the non-
null primitive (Fig. 33).

The ISOERR algorithm (Appendix A) begins with
an initial determination of whether a single sample cor-
rection should be attempted for artifact j. As noted
above, single sample correction is attempted whenever
L(j) _s 4 (step 5.11.2). If L(j) > 4, the artifact is

/ left untreated by ISOERR.
Quantities B and F, initialized in step 5.12.1, are

/ the boundaries of a search interval: each sample value
/ of x(n) (for B :s n s F) is separately considered as

a possible isolated error.
/As discussed in connection with Fig. 33, when L (j)

. ,, I we must consider the possibility that an isolated
Sample no.: k 1 2 3 4 5 6 7 8 9 error may have occurred at any of three possible Io-
Error: s(k) 0 0 0 -eo  0 0 0 0 0 cations, viz., b - 1, b, and b + 1. Thus, ISOERR
PRMTVS: pfk) 0 0 1 0 0 0 0 next tests to see if L = I (step 5.12.2); if so, ISOERR
BOUNDS: b/f expands in block 5.125 the search boundaries B and F. -.

We now draw what we refer to as the "block 5.13
Figure 33. A single error occurs one sample distant hypothesis." In block 5.13 we test the hypothesis that
from the peak of an isosceles point response (Fig. 15a). the jth artifact is caused by an isolated error occur-
The boundary estimates b and f provided by BOUNDS
do not encompass the error at k = 4 for the depicted ring at the location n within the artifact.
example. The first action within block 5.13 is to save the origi-

nal, presumably defective, data value at location n
(step 5.13. 1). Next, the NTRPL8 algorithm is used in
step 5.13.2 to generate a replacement value for x(n),

double-peaked artifact. The artifact boundaries gener- called y(n), by interpolation from the neighboring
ated by BOUNDS encompass the error at k = 5, as values x(n - 2), x(n - 1), x(n + 1), and x(n +
well as one valid datum on each side of the error. 2), which are hypothesized to be valid data. (The cu- U

In Fig. 32 a single error occurs one sample distant bic interpolation implemented by NTRPL8 is derived
from the peak of a flat-topped point response (e.g., in Appendix B). If the block 5.13 hypothesis is via-
Figs. 15b and 17). The amplitude of the error is such ble, the artifact will now have been eliminated. Thus
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where we recall in applying Eq. 22 that waveform x(k) On the first pass through block 5.13 (n = 4),
has been modified by replacing x(N(i)] with the in- ISOERR applies a trial correction at location k 4.
terpolated value y[N(i)] (step 5.13.3).

For example, considering Fig. 34, the first of the As indicated in Fig. 35, subsequent output generated
viable single sample corrections (i = I) occurs at lo- by PRMTVS at step 5.13.4, p' (k), has a non-null
cation k = N(l) = 3; the second viable single sample character, p'( 6 ) = 1. Consequently, block 5.135 is not
correction (i = 2) occurs at location k = N(2) = 4. executed, and the counter of viable corrections retainsWe close this section with one more example illus- its initial value, i =0. .

trating the interaction between the algorithms dis-
cussed up to this point: PRMTVS, BOUNDS, On the second pass through block 5.13 (n = 5),
ISOERR, and NTRPL8. ISOERR applies a trial single correction at location

k = 5. The replacement value for x(5) generated by
Figure 35 depicts a constant-valued waveform into NTRPL8 is

which equal amplitude errors have been inserted at lo-
cations k = 4 and k = 6. The damaged waveform
is input to PRMTVS, which generates a vector of
primitives, p (k), containing three non-null characters y(5) = x(5) + 4e0 /3
(Fig. 35). The BOUNDS algorithm identifies one er-
ror artifact in the waveform, extending from b = 4 .

tof = 6, encompassing the data errors at k = 4 and as indicated in Fig. 35. Inspection of Fig. 35 shows

k = 6, and a valid datum at k = 5. Since L = 3 < that the originally separate errors at k = 4 and k =
4, ISOERR attempts to eliminate the artifact with a 6 have been "blended" smoothly with yet a third er-

single sample correction applied at each of three lo- ror produced by ISOERR itself. Indeed, when
cations: k 4 and 6. PRMTVS is applied to the resultant waveform (now

a 4containing three errors), it is found that the negative
error peak originally present at/k = 5 has been elimi-
nated, i.e., while originally p(5) = - i, after the se-

v5) cond pass through block 5.13 we obtain p'(5) = 0.
However, the "shoulders" of the error artifact are still
too abrupt to be optically induced: two error edgesf now appear in p'(k).

x15) It follows from the foregoing discussion that
- , -- 0- ISOE leaves unchanged the multiple error artifact

Sample no.: k 2 3 4 5 6 7 8 depicted in Fig. 35: ISOERR neither damages good
Errors: s(k) 0 0 eo  0 •o  0  0 data nor corrects either of the errors.

PRMTVS: p(k) 0 1 -1 1 0 0

Block 5.13 We note that ISOERR detects and corrects with high
First pass: p'(k) 0 0 0 1 0 0 accuracy all six examples of single-sample damage
Second pass: p'tk) 2 2 0 -2 -2 0 presented above in Figs. 29 through 34.

Third pass: p'(kJ 0 1 0 0 0 0

Figure 35. Equal amplitude errors are inserted at Io- Finally, we note that the version of EDS used in our
cations k = 4 and k = 6 into a constant-valued wave- statistical validation study had a call to PK3MOD fol-
form. The dashed waveform depicted here, passing lowing step 5.13.4, rather than at step 2.13.3, where
through y(5), is the waveform's appearance after the PK3MOD could potentially have had greater impact
second pass through step 5.13.3. in reducing undetected errors. NA
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8. IDENTIFICATION OF MULTIPLE ERRORS

Multiple sequential errors generally cannot be cor-
rected, i.e., there exists no way to reconstruct with high
accuracy the original data values. The most we can I
accomplish in our treatment of multiple errors is to /"(F+1)
identify which of the data are defective, and then to
smoothly interpolate through the damaged regions. (8-1) --
Once data errors are properly labeled they may be ex-
cluded from use in subsequent analysis ("excised"
from the data set). Consequently, the net effect of hav- 7
ing multiple errors is a speckling of "blind spots" in Sample no.: k 3 4 5 6 7 8 9 10 11 12 1314 1516

the data, with a consequent reduction in data set size Errors: s(k) 0 0 0 eI -e2 0 e3 e4 -e5 e6 0 0 0 0
and ease of use, but no degradation in the structural PRMTVS: p(k) 0 0 0 1 -1 0 0 1-1 1-1 0 0 0
integrity of the waveforms. BOUNDS: b f

Our algorithm for detecting and smoothing multi-
ple sequential errors is called MLTPLS (Appendix A). Step7.12.3 p'(k) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
The waveform data entered as input to MLTPLS have Figure 36. Example of a large error artifact requiring
previously been operated on by ISOERR; i.e., the iso- for excision just one pass through block 7.12. As
lated errors have been corrected prior to operating on shown here, linear interpolation through the excised *
the data with MLTPLS. region produces small correction errors when the origi-

In step 7.12.2 MLTPLS attempts to excise artifact nal data (open circles) are slowly varying. Step 1.7 in
n by linearly interpolating from [8(n) - 11 to ln) executive routine EDS restores the measured value
+ 1]. The smoothed version of x(k) is then examined when it differs only slightly from the corrected value.
by PRMTVS in step 7.12.3 to determine whether any This restoration step prevents damage to samples x(8)

,* . excessively abrupt peaks or edges remain in the wave- and x(13) in the depicted example.
form. If so, the artifact boundaries are expanded in
block 7.31 to obtain new values for B(n) and F(n),
and MLTPLS iterates once again through the linear BOUNDS do not need to be modified, and only one
interpolation block. The process of boundary expan- pass through block 7.12 is required. Moreover, the
sion and artifact smoothing continues until PRMTVS differences between the actual data values (0) and the
returns a vector of null primitives, which causes interpolated values (X) (i.e., the "correction errors")
MLTPLS to terminate, are apparently small.

It was noted during algorithm validation that many In Fig. 37 two sequential data errors are implanted
of the undetected errors (Fig. 13) occur in between in an otherwise constant-valued waveform. In this in-
pairs of recognized multiple error artifacts. This ob- stance, the very large error at k = 7 prevents PRMTVS
servation motivated the development of the MERG- from recognizing the smaller error at k = 8 either as
ER algorithm (Appendix A), invoked from MLTPLS an error peak or an error edge. However, after one
at step 7.31.3. However, our statistical validation, pass through block 7.12 has largely suppressed the
(Figs. 12 through 14) is based on a version of EDS dominant error at k = 7, PRMTVS on the second pass
that does not include MERGER. through block 7.12 successfully uncovers the smaller

The values assigned to constants C and C, at step error at k = 8.
9.11.1 establish a trade-off between data damage and In Fig. 38 we illustrate the point that multiple er-

. missed errors. Quantifying this trade-off, and thus rors occurring in a high-curvature waveform typical-
selecting optimum values for C and C2, would re- ly produce significant irrecoverable damage. In this
quire an extended Monte Carlo analysis that has not figure, errors occur at two locations in the center of
been performed. the longwave/channel 2 point response. On the first

We next illustrate the operation of MLTPLS with pass through block 7.12, linear interpolation from (B
three examples. - I), to (F + 1)l produces the dashed curve shown

Figure 36 depicts a large error artifact implanted in Fig. 38. On successive passes, the residual highly
in a slowly varying waveform. In this instance, the damaged structure is progressively sliced away until,
original boundary estimates b and f generated by on the third pass, MLTPLS terminates with the data
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i

(F+11),
p/ (F+1) 1

(8-1,2 iF 1!
Sampleno.: k 4 5 6 7 8 9 10 11 -1)

Errors: s(k) 0 0 0 3e0  eo 0 0 0 (F+1) 2 .3
PRMTVS: pik) 0 0 0 1 0 0 0 0 (S-I ,3
BOUNDS: b/f 0, I 0 I I I

t. Sampleno.: k 5 6 7 8 9 10 11 12 13 1.1
Step 7.12.3 Errors: s(k) 0 0 0 e1 -e2  0 0 0 0
First pass: p'(k) 0 0 2 2 1 0 0 0 PRMTVS: p(k) 0 0 0 1 -1 t 0 0 0

Secondpass:p'(k) 0 0 0 0 0 0 0 0 BOUNDS: b f -,

Figure 37. Example of a length-2 artifact requiring for Step 7.12.3
First pass: p'(k) 0 0 0 0 0 0 1 0 0

excision two passes through block 7.12. Errors are im- Second pass: p'(kJ 0 2 2 0 0 0 0 0 0
planted at two locations, k = 7 and k = 8, in a con- Third pass: p'tk) 0 0 0 0 0 0 0 0 0
stant amplitude waveform. On the first pass, the
SMOOTH algorithm performs linear interpolation from Figure 38. Errors occur at two locations in the center
(B - 1), to (F + 1)1. As shown by the dashed wave- of a point response waveform. On the first pass
form, the artifact has not yet been eliminated. On the through block 7.12, linear interpolation from (B - 1),
second pass through 7.12, SMOOTH performs linear to (F + 1), produces the dashed curve shown in the
interpolation from (B - 1)2 to (F + 1)2. Algorithm figure. Algorithm MLTPLS terminates after the third in-
MLTPLS then terminates with the artifact having been terpolation, from sample (B - 1)3 to sample (F + 1)3.
wholly excised. Thus, a 5-sample blind spot is created, masking out

both the data errors and the point response.

errors and point response both having been wholly ex- what had originally been a significant structural
cised. The final interpolation is between samples (B feature.
- )3 = 6 and (F + 1)3 = 12. Thus, a 5-sample The peak-slicing process illustrated in Fig. 38is also
blind spot has been created in the data, masking out illustrated in Figs. 6, 8, and I I (feature D).

9. EXECUTIVE ROUTINE EDS

Now that the elements of our error detection sys- and error edges are used by BOUNDS in step 1.3 to
tern have been discussed, we bring all of our algorithms determine neighborhoods within which error smooth-
together under the control of executive routine EDS ing will be required.
(Appendix A). In step 1.4, EDS applies, via ISOERR, a single sam- &

In step 1. 1, EDS uses PRMTVS to screen a scan pie correction to each of the damaged neighborhoods
line of data. If PRMTVS detects no excessively abrupt amenable to this simplest expedient. Assuming that
peaks or edges in the data, EDS terminates in step 1.2. at least one neighborhood has been repaired with a
Otherwise, the locations of the detected error peaks single sample fix, block 1 .51 operates on the partially

32k
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repaired waveform to establish a residual set of mul- been changed by only a small amount (nominally, four
tiply damaged neighborhoods. The multiple error or fewer digital counts) the original data value is re-
regions are smoothed by the MLTPLS algorithm in stored to the waveform. (Sensor internal noise is one
step 1.6. digital count, RMS; sensor full-scale dynamic range

is 4096 digital counts.)
The last operation in EDS, step 1.7, compares the We note that step 1.7 was inactive during the statisti-

smoothed waveform with a stored version of the origi- cal validation discussed in connection with Figs. 12
nal unprocessed waveform. Where data values have through 14.

10. CONCLUSIONS

A Navy program was recently begun to obtain a test curacy. However, multiple sequential errors general-
set of infrared (IR) background images for develop- ly cannot be corrected; i.e., there exists no way to
ing IR search and track clutter suppression techniques. reconstruct with high accuracy the original data values.
Unfortunately, the initial set of measurements was Our approach to treating multiple errors is to identi- 1
contaminated by a malfunctioning digital recorder fy which of the data are defective, and then to smooth-
with about 4% defective data (3% small-amplitude er- ly interpolate through the damaged regions. Once data
rors and 1% large-am plitude errors). errors are properly labeled they may be excluded from

In this report we present a new Error Detection and use in subsequent analysis ("excised" from the data
Smoothing algorithm, EDS, and we demonstrate that set). Consequently, the net effect of having multiple

CcEDS is capable of eliminating from the IR data almost errors is a speckling of "blind spots" in the data, withall large amplitude errors (amplitude greater than 9 a consequent reduction in data set size and ease of use,-times the standard deviation of the sensor closed-cover but no degradation in the structural integrity of the
noise). waveforms.

The EDS algorithm is generally capable of dis- A valuable feature of the new algorithm is its abili-
criminating electrically induced burst noise (including ty to accurately isolate error bursts (i.e., long sequences
burst noise from electromagnetic interference) from of defective data) by means of a region growing ap-
structural features induced by optical variations in the proach.
viewed scene. Moreover, EDS is generally applicable We have presented a statistical validation based on
to data from any optical scanner whose output is sam- evaluating the performance of EDS against a synthet-t..pled digitally multiple times per dwell. ically degraded data set. We have found that, on the

The EDS algorithm operates entirely in the time do- average, less than 1% of the larger-amplitude errors
main. The bases for error detection are smoothness propagate undetected through the error detection al-
criteria extracted from measurements made against a gorithm. The density of large amplitude errors is thus
laboratory point source, and do not depend on the reduced from about 60 per frame to about 0.5 per
highly variable structure of the IR clutter data viewed frame (counting only those errors whose amplitude is
in the field. In effect, EDS exploits the redundancy at least 10 times the sensor noise).
inherent in highly sampled image data. We have observed that the errors undetected by EDS -

The computation is structured such that the data tend to be of the following kinds:
are pre-screened with a simple algorithm that allows
further attention to be concentrated only on "suspect" 0 Errors at the edge of a recognized error burst,
neighborhoods. There are no computation -intensive where the error burst abuts a region of high cur-
steps, such as FFT's or histograms, required for the vature in the IR data,
data set as a whole. 0 Errors sandwiched closely between a pair of

The data are sampled at a sufficiently high rate that recognized error artifacts (typically, of large
isolated errors can be corrected by EDS to high ac- extent),
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* Errors occurring in waveforms that are identified was used in our statistical validation. It is possible that,
by EDS as having exceptionally high error in the process of casting EDS into a more easily ex-
content. plained form, we may have introduced logic errors.

These observations could be used to derive useage We conclude that our immediate objectives were met
guidelines for the data. Formalized as algorithms (e.g., in the sense that EDS proved adequate for extracting
the MERGER algorithm in Appendix A), it is proba- from the damaged IR data a limited interim data set
ble that these guidelines could reduce the rate of un- for use until better data were obtainable. From a larger
detected errors significantly below the nominal 0.5 perspective, we have successfully demonstrated the
errors per frame quoted above. utility of a structural approach to error detection for

Finally, it must be said that the block-structured al- highly sampled image data. Moreover, we have built
gorithms presented as EDS in Appendix A are com- in EDS a structure upon which could be based even

pletely restructured from the FORTRAN source that more powerful error detection algorithms.

,.

Jt.
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Appeadix A
ALGORITHMS

Nine algorithms are provided in this Appendix (see Table A-1
Table A-I), in a block-structured format adopted from Number, name, and a brief description of nine
Ref. 13. algorithms.

Individual steps within each algorithm are refer- Nac
enced with statements of the form: Number Name Description

Step (X.YY.Z), I EDS Error detection andsmoothing (executive
- " where routine)where 2 PRMTVS Detects error peak and edge

X = algorithm number primitives
3 PK2MOD Modifies definition of PK2YY = block number bpiZ tpnme ihnbokY.primitive e

4 BOUNDS Develops estimates for
For example, step 2.13.1 corresponds to the statement artifact boundaries
(from RMTVS): 5 ISOERR Detects and smoothes

6 N.RPL. isolated errors
Set q1  (L/LL) + (R/RR).NTRPL8 Single sample interpolation

7 MLTPLS Detects and smoothes

The version of EDS evaluated statistically in the text multiple-error artifacts
did not include algorithms PK2MOD and MERGER. 8 SMOOTH Linear interpolation
In addition, step 1.7 was inactive during the numeri- through multi-error artifact
cal validations. 9 MERGER Merges proximate artifacts

Algorithm 1: EDS Error detection and smoothing, executive routine

Input: Data points {x(k), k-1,2 ..... 00
Output: Smoothed data points {x(k), k=3,4,...,398)

Note: This routine uses Algorithms PRMTVS, BOUNDS, ISOERR, and MLTPLS.

1. Execute PRMTVS.
i 2. If' all primitives are null then terminate.

3. Execute BOUNDS.
4. Execute ISOERR: Corrects isolated errors.
5. Ii" any isolated errors were f'ound in step 4 then do block 51.

Begin block 51;

1. Execute PRMTVS.
2. If" all primitives are null then terminate.

3. Execute BOUNDS.
End block 51;

. Execute MLTPLS: Smoothes multiple-error artifacts.

7. If corrected value differs from original value by 4 o- less,
restore the pre-correction value (optional).

• "T. Pavlidis, Structur'al Pattern Recognition, Springer-Verlag, "
Berlin, Heidelberg, New York, 1977.

S *..Sv-o-*.5o-.---
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Algorithm 2 : PRMTVS Detects erro pe-ik and edge primitives

Input: Dat3 point-; !x-'k), kIl,...,4l}j
Output: Primitives {p(k), k=3,4....,39-i (of. Eq. 13)

Note: This joutine us,3 Aiggritnn PK2MOD.

I. For k=3,.,...,398 do block 11.
Begin block It Identify e-ror peas;
1. Obtain slopes LL, _, R, and RR (cf. Eq. 19 arid Fig. 20).
2. Set p(k)=O. C.

3a. It ILl and IRI are both ! 4, and
b. if L-R < 0

then do block 12.
Begin bloCK 12;
1. If LL-L < 0, or if RR-R 5 0, or both.

then p(k) = L/ILI.
else do block 13.

Begin block 13;
1. Set ql - {'L/LL) + (R/RR)i.
2. If q, > Q, = 1.85, then p(k) L/ILl.
3. Execute PK2MOD.
End block 13;

End block 12;End block 11; 1

2. For k=2,3,...,398, do block 21.
Begin block 21 : Identify error edges;
1. Obtain slopes L, C, and R (cf. Eq. 20 and Fig. 21).

2a. If jCj Z 5, anid
b. if Ip(k)I and Ip(k+l)l * 1,

then do block 22.
Begin block 22;
1. If L*CSO, and if R/CS1,

then p(k) - p(k+,) - 2"C/ICI.
else do block 23.

Begin block 23;
1. If R-CO and If L/C1,

Then p(k) - p(k+l) - 2.c/CIl,
else do block 24.

Begin block 24;
I. If L, C, and R have the same :nign,

then do block 25. ,':
Begin block 25;
1. Set q2 - C/(LR).
2. If q2 > Q2 2,

then p(k) - p(k+l) - 2.C/Ici.
End block 25;

End block 24; "
End block 23;

End block 22;
End block 21; y

I-
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Algorithm 3: PK2MOD Modifies definition of PK2 primi'xve

Input: a) Data points {x(i), 1=!,2,...,400i
b) Sample number k

V c) Initial value of p(K

Output: Revised value of p1(k)

Note: This routine is used by Algorithm PRMTVS.

1. If Ip(k)j = 1, k=3, or k=398, then return.
2. Set h,- x(k) - [x(k-2) + x(k 2)]/2.
3. Do block 31.

Begin block 31: assure that peak is iut of noise;
- . If hi  Z 15 do block 32;

Begin block 32: extend PKt test to 7-point neighborhood;
1. Set h2 = x(k) - [x(k-3) + (k-3)]/2.
2. Set L =x(k) - x(k-1)].
3. Set q3 =h/h"4. If q3. 

> 
Q3 

= 
0.8,

then set p(k) = L/11.
End block 32;

End block 31;

41
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Algorithm 4: BOUNDS Calculates estimates for artifact. bovdaries

Input: Primitives (p(k), k = 3,4. ... ,3''1

Output: Estimates for
a) number of artifacts, J
b) beginning sample number or jtn artifact, Ibli), j-=l,2,....JJ
c) final sample number of jth artifact, {f(j), j1,2,....Jt

1. Set n=O to Initialize the artifact counte-. A

2. Set k=2 to initialize the p(k) pointer.
3. While k<395 do block 11.

Begin block 11;
1. Set k = k+1 to move the p(k) pointer along the scan line. %4

2. If p(k) * 0 do block 12.

Begin block 12: an artifact has been found;
1. Set n - n+1 to Increment the artifact counter.
2. Set b(n) = k and FLAG = I.
3. Do block 13 for I - k, 395.

Begin block 13: search for end of artifact;
1. Set f(n) - I.
2. If ptf(n).1) - p[f(n)+2] = p[f(n)+3] = 0 go to 12.7
End block 13;

4. Set f(n) * 398.
5. If p(398) 0 set f(n) - 397.
6. If p(397) - p(39 8

) 0 set f(n) = 396.
7. If b(n) S 4 or r(n) R 397 set FLAG - 0.
8. If p(b(n)] • p[f(n)] • FLAG - -4 do block 14. re

Begin block 14: shrink plateau artifact boundaries;

1. Set b(n) = b(n) + 1.
2. Set f(n) - f(n) - 1.
End block 14;

9. Set k - f(n)+3; search for next artifact will start at
f(n)+4.

End block 12;
End block 11;

4. Set J = n.
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Algorithm 5:ISORR D.tect ind .*motha i;o atol, errors

Input: a) Data pointi {xlk), < i,,.,430}
b) Artifact boundaries {o(j), f(j), j=1,2,...,J)

Output: Dat3 po'nts {X'k;, ... . with js,;l.te, er'r's

corrected over th rarnge 3 ' K < 398.

Note: This routine jses Aigoithyns NTRPL8 and PRMTVS.

1. Do block 11 for j=1,2..
Begin block 11;

1. Set L(j) = if(j) - b(j) * 13 to estimate artifact length.
2. If L(j) ii 4 do block 12.

Begin block 12 : Attempt single sample correction of artifact J.
1. Set i=O, B(j) = b(j), and F(J) - f J).
2. If L(J)=I do block 125.-e

% " Begin block 125 : Expand search region;,f.

I. If B(j) > 3 set B(j) = [B(j) - 1].
2. If F(j) < 398 set F(J) = (F(j) + 1].
End block 1'15;

S"3. Do block 13 for n = B(J), F(J).
Begin block 13 : Attempt single sample correction at n;

1. Set z = x(n) to save original value.
2. Apply NTRPL8 to (x(k)I to get y(n).
3. Set x(n) - y(n) to perform replacement.
4. Apply PRMTVS to (x(k)) to get {p'(k)}.
5. If p'(.)-O, B5kSF, do block 135.

Begin block 135 : Single correction at n is
viable;
1. Set i-1+1.
2. Set N(i) - n.

3. Calculate a(i) from Eq. (22).
End block 135;

*6. Set x(n) - z to restore original value.

End block 13;

4. If 1*0 do block 14.

Begin block 14 : Apply best of the i viable corrections.
1. Find m such that a(m) = min{a(1), a(2)....,a()J.
2. Set x[N(m)]) y[N(m)], to perform correction.
End block 114;

End block 12;
End block 11;

r
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Der i'nitio,.s f V3' tl-' A:i gr t[L'O I.)'?i8h

Sin. x, , t'w "cur r-nt itI t' ' , *e., th"e t i i; t our,'ent, y
bi'ig con3 Idered fo" siril ;' .;amp'e corec.',n.

maxlnum v,. j of j; , tol Jn of ArLifacti i;i ttwe wVevej,-:,
(input to Algo:,'tlnm 'So)ERR, provide, by A'go~ltnm .vOUNI)S). g

.(JF(j ) ound tne a-gument range of .'K) over which tre sz,,r"ch wiLl oc*
conducted for i singl, . 

sample- oorrectior to arti'a-t j. , "

n rinning index of position aithin cuirent artA'act.

z dummy va-iable for tempord'ily stoing a pre-correction value,,. ,)f XWor' x(K). .. '_

y(n) a -eplacement value for x~n), gener'ated by interpolation from
adjacent samples (output of Algorithm NTRPL8).

p'C K) sequence of error, primitives for waveform In which sample x(n) has
been replaced by interpolated value (output of Algorithm PRMTVS).

t counts the number of viable single sample corrections within the
current artifact.

N(i) location of the ith vlable single sample correctlon within the
current artifact.

a(i) measure of smoothness of sequence [x(k)} after ith viable
isolated correction to the current artifact (cf. Eq. 22).

m value of i tnat indexes the "best" of the viable isolated
corrections, in that the resulting corrected sequence fx(.<)}
is "smoothest".

Algo-ithm 6: NTRPL8 Single sample Interpolation

Input: a) Data points (x(k), K=1,2,..., 400}
b) Location, n, of sample for which rep.acement is desirel.

Output: Interpolated val-ie, y(n), to replace the presumably defective
value, x(n).

Note: This routine is used by Algorithm ISOERR.
Integer n is always within the range 35n5398.

p.

1. Set y(n) - ix(n-1) x(n*1)]/2, to obtain linear interpolation.
2. Set C - ix(n-2) - x(n+2)]/2, to obtain correction term.
3. Set y(n) - y(n) + [y(n)-C]/3. to obtain cubic interpolation.

4,
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Algorithm 7: MLTPLS Detects and smoothes multiple-e,'ror artifacts

Input: a) Data points 1x(k), k=1,2,...,430} wit'i isolated errof'6 .j.eady

corrected.w b) Primitives Wpk), k=3,4,..-,.398)i

c) Estimated number of multiple-error artifacta J
d) Estimated artifact boundr'ie fb(j), f(j), j:1,;,...,J)

Output: Smoothed data points {x(k), k-3,4,...,3981

Note: This algoritnil use* Algorithm; PRMTVS, SMOOTH, and MERGER.

1. Set J=O and n=O.
2. While j < J do block 11.

Begin block 11;
1. Set j=j 1 and n-n 1.
2. Set B(n) = !(j) and F(n) = f(j).

3. Set m=1.
4. Set p'(2 ) = p'(399)=O.
5. If m.O do block 12.

Begin block 12;
1. Set m-O.

2. Execute SMOOTH to interpolate linearly through multi-error
artifact.

3. Apply PRMTVS to {x(k)) to obtain {p'kk)}.
4. Do block 21 for k - [B(n)-1], [F(n)+1).

Begin block 21: Count the non-null entries in p'(K);

1. If p'(00O do block 22.
Begin block 22: Error artifact still exists;
1. Set m-m+T.

2. Set km;k.
End block 22;

End block 21;
5. If m*O do block 31.

Begin block 31: Artifact stilt exists - grow the
boundaries:
1. Set B(n) - mln[B(n),kl).

2. Set F(n) - max [F(n),k m.
3. Execute MERGER to merge proximate artifacts. %
End block 31;-"

End block 12;
End block 11;
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Algorithm 3: SMO)TH Linear interp'o! ti in tnr -agi mA -e,"or a.-tifact

Input: a) lv:lex n
h) Dat-I Points{xk,<, .. ,00

c) Boundariea (9(i), W )izl ,2, ..... il

Outpjt: Smoothed data jx(k). K=1,2 .... t0o

Note: This routine is used by A!go-itnm Mr'.PLS.

1. If 8(n) 5 do block 11 for k-l...,F(n).
Begin block 11: blank beginning or line;
1. Set x(k) - x[F(n)11].
End block 11;

2. If F(n)1396 do block 2T for k.B(n). ,00.
Begin block 21: blank end of line;
1. Set x(k) = x[B(n)-1].
End block 21;

3. If B(n)Z6 and F(n)S395 do block 31.
Begin block 31: linear interpolation from (B-i) to (F I);
1. Set L(n) - F(n) - B(n) + 1.
2. Set A _ fxrF(n)+.I - x'B(n)-1)/-L(n)+Ij.

3. Do block 32 for i-1. L(n).
Begin block 32;
1. Set k - B(n) i-1.
2. Set x(k) = xCB(n)-1] + 1"6.
End block 32;

End block 31;

Algorithm 9: MERGER Merges proximate artifacts

Input: a) Indices j and n
b) Boundary estimates Ib(i), (s). 1-1,2,...J)

c) Improved boundaries (B(i), F(i), i-l,2,...n}

Output: a) Revised values of j and n
b) Revised values of B(n) and F(n)

Note: This routine is used by Algorithm MLTPLq.S

1. Do block 11.
Begin block 11;
1. Set C -2 and C -5.
2. Set Ln) - F(ni-B(n) l.

3. If L(n)9C 2 set C1-C1 1 .
End block 11;

2. If JS(J-1) and F(n)k[b(j+i) - C11 then do block 21.
Begin block 21: Region merging, forward;
1. Set J-J+i. * ;
2. Set F(n) - f(J).

End block 21;
3. If nZ2 and B(n)S[F(n) + C1 3 then do block 31.

Begin block 31: Region merging, backward;
1. Set n-n-1.
2. Set F(n) - F(n~l).
End block 31;

46

--. **.*. '.



THE JOHNS HOPKINS UNIVERSITY

APPLIED PHNYSICS LABORATORY
LAUREL. MARYLAND

Appendix 8

DERIVATION OF CUBIC INTERPOLATION FORMULA

Algorithm NTRPL8 generates a replacement value From Eqs. B-3, 8-4, and B-6,
for x(n), called y(n), by interpolating from the four
neighboring values: x(n - 2), x(n - 1), x(n + 1), R =a+ C. (B-8)
and x( n + 2). In this appendix we derive the interpo-
lation formula used by NTRPL8. From Eqs. B-2, B-5, and B-7,

Since it is our intent to interpolate between four
"known" data points, we select as our interpolation C = a + 4c. (B-9)

* function a cubic polynomial,

y(k) = a + b(k - n) + c(k - n) 2  From Eqs. B-8 and B-9,

+ d(k - n) 3, 1k - ni !5 2. (B-1) a = (42- Q/13 = 29 + (2- C)13 . (B-10)

where the coefficients (a, b, cr, and d) are at present However, from Eq. B-1.
treated as "unknowns"~ in need of determination.

The four data values neighboring sample n are sub- y(n) = a. (-l
stituted into Eq. B-I to obtain four equations:

x~n 2) y~n- 2)Thus, from Eqs. B-10 and B-Il1,

= a- 2b +4c -8d (11-2) y (n) = I+ (9-C) /3, (11-12)

x(n -1) =y(n-i1) where
= a-b + c- d (B-3)

x(n +1) =y(n+l1) 2 = Ix(n - 1) + x(ia + 1)1/2 (B-13)

x~ )=aYn+ 2) (B1-) C =[x(n -2) +x(n +2)1/2 . (B-14)

= a + 2b + 4c + gd. (B-5) The linear interpolation estimate, Eq. B-13, is
formed in step 6. 1; the correction term C, Eq. B- 14,

We next define quantities 2 and C as follows: is formed in step 6.2; the cubic interpolation, Eq. B-12,
V 2=jx~ - I + ~n +l)J2, (-6) is formed in step 6.3.

R = x~n- 1)+ xn +1)1/, (-6) It also follows from Eqs. B-12 through B-14 that

and
y(n) =(-x(n -2) +4x(n -1) +

C fx~r- 2) +x(n +2)1/2. (B-7) 4x(n+I1)-x(n+ 2))/6 . (B-15)
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